Exercise 15

Use the definition of continuity and the properties of limits to show that the function is continuous on the given interval.

$$
f(x)=x+\sqrt{x-4}, \quad[4, \infty)
$$

Solution

Assuming that $4 \leq a<\infty$, calculate the limit of $f(x)$ as x approaches a using the limit laws.

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a}(x+\sqrt{x-4}) \\
& =\lim _{x \rightarrow a} x+\lim _{x \rightarrow a} \sqrt{x-4} \\
& =a+\sqrt{\lim _{x \rightarrow a}(x-4)} \\
& =a+\sqrt{\lim _{x \rightarrow a} x-\lim _{x \rightarrow a} 4} \\
& =a+\sqrt{a-4} \\
& =f(a)
\end{aligned}
$$

Therefore, $f(x)=x+\sqrt{x-4}$ is continuous on the interval $[4, \infty)$.

